ATP binding site mutagenesis reveals different subunit stoichiometry of functional P2X2/3 and P2X2/6 receptors.

نویسندگان

  • Ralf Hausmann
  • Mandy Bodnar
  • Ronja Woltersdorf
  • Haihong Wang
  • Martin Fuchs
  • Nanette Messemer
  • Ying Qin
  • Janka Günther
  • Thomas Riedel
  • Marcus Grohmann
  • Karen Nieber
  • Günther Schmalzing
  • Patrizia Rubini
  • Peter Illes
چکیده

The aim of the present experiments was to clarify the subunit stoichiometry of P2X2/3 and P2X2/6 receptors, where the same subunit (P2X2) forms a receptor with two different partners (P2X3 or P2X6). For this purpose, four non-functional Ala mutants of the P2X2, P2X3, and P2X6 subunits were generated by replacing single, homologous amino acids particularly important for agonist binding. Co-expression of these mutants in HEK293 cells to yield the P2X2 WT/P2X3 mutant or P2X2 mutant/P2X3 WT receptors resulted in a selective blockade of agonist responses in the former combination only. In contrast, of the P2X2 WT/P2X6 mutant and P2X2 mutant/P2X6 WT receptors, only the latter combination failed to respond to agonists. The effects of α,β-methylene-ATP and 2-methylthio-ATP were determined by measuring transmembrane currents by the patch clamp technique and intracellular Ca(2+) transients by the Ca(2+)-imaging method. Protein labeling, purification, and PAGE confirmed the assembly and surface trafficking of the investigated WT and WT/mutant combinations in Xenopus laevis oocytes. In conclusion, both electrophysiological and biochemical investigations uniformly indicate that one subunit of P2X2 and two subunits of P2X3 form P2X2/3 heteromeric receptors, whereas two subunits of P2X2 and one subunit of P2X6 constitute P2X2/6 receptors. Further, it was shown that already two binding sites of the three possible ones are sufficient to allow these receptors to react with their agonists.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role of ectodomain lysines in the subunits of the heteromeric P2X2/3 receptor.

Lysine residues near each end of the receptor ectodomain (in rat P2X2 Lys69 and Lys308) have been implicated in ATP binding to P2X receptors. We recorded membrane currents from human embryonic kidney cells expressing P2X subunits and found that lysine-to-alanine substitutions at equivalent positions in the P2X3 receptor (Lys63 and Lys299) also prevented channel function. Heteromeric P2X2/3 rece...

متن کامل

ACCELERATED COMMUNICATION Role of Ectodomain Lysines in the Subunits of the Heteromeric P2X2/3 Receptor

Lysine residues near each end of the receptor ectodomain (in rat P2X2 Lys 69 and Lys) have been implicated in ATP binding to P2X receptors. We recorded membrane currents from human embryonic kidney cells expressing P2X subunits and found that lysine-to-alanine substitutions at equivalent positions in the P2X3 receptor (Lys 63 and Lys) also prevented channel function. Heteromeric P2X2/3 receptor...

متن کامل

Subtype-Specific Mechanisms for Functional Interaction between a6b4* Nicotinic Acetylcholine Receptors and P2X Receptors

P2X receptors and nicotinic acetylcholine receptors (nAChRs) display functional and physical interactions in many cell types and heterologous expression systems, but interactions between a6b4-containing (a6b4*) nAChRs and P2X2 receptors and/or P2X3 receptors have not been fully characterized. We measured several types of crosstalk in oocytes coexpressing a6b4 nAChRs and P2X2, P2X3, or P2X2/3 re...

متن کامل

Subtype-specific mechanisms for functional interaction between α6β4* nicotinic acetylcholine receptors and P2X receptors.

P2X receptors and nicotinic acetylcholine receptors (nAChRs) display functional and physical interactions in many cell types and heterologous expression systems, but interactions between α6β4-containing (α6β4*) nAChRs and P2X2 receptors and/or P2X3 receptors have not been fully characterized. We measured several types of crosstalk in oocytes coexpressing α6β4 nAChRs and P2X2, P2X3, or P2X2/3 re...

متن کامل

Neuronal P2X2 receptors are mobile ATP sensors that explore the plasma membrane when activated.

ATP-gated ionotropic P2X2 receptors are widely expressed in neurons. Although the electrophysiological properties of P2X2 receptors have been extensively studied, little is known about the plasma membrane lateral mobility of P2X2 receptors or whether receptor mobility is regulated by ATP. Here we used single-molecule imaging with simultaneous whole-cell voltage-clamp recordings to track quantum...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 287 17  شماره 

صفحات  -

تاریخ انتشار 2012